Non-negative Spectral Learning for Linear Sequential Systems
نویسندگان
چکیده
Method of moments (MoM) has recently become an appealing alternative to standard iterative approaches like Expectation Maximization (EM) to learn latent variable models. In addition, MoM-based algorithms come with global convergence guarantees in the form of finite sample bounds. However, given enough computation time, by using restarts and heuristics to avoid local optima, iterative approaches often achieve better performance. We believe that this performance gap is in part due to the fact that MoM-based algorithms can output negative probabilities. By constraining the search space, we propose a non-negative spectral algorithm (NNSpectral) avoiding computing negative probabilities by design. NNSpectral is compared to other MoM-based algorithms and EM on synthetic problems of the PAutomaC challenge. Not only, NNSpectral outperforms other MoM-based algorithms, but also, achieves very competitive results in comparison to EM.
منابع مشابه
Sequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملInvestigating Predictors of High School Students’ Negative Attitudes Towards Learning English by Developing, Validating, and Running a Questionnaire
The purpose of this study was to explore the predictors of negative attitudes towards learning English from L2 learners’ points of view. A mixed methods research approach was adopted with a sequential exploratory design, followed by an endorsement phase. Eighteen high school students in Fars province (Iran) were interviewed on the sources of negative attitudes towards learning English. Based on...
متن کامل